锂电负极材料Sn基体积效应改进

众所周知,负极材料的能量密度是影响锂电池能量密度的主要因素之一,可见负极材料在锂电池化学体系中起着至关重要的作用,其中锂电池负极材料Sn基主要有锡氧化物和锡合金等。接下来,本文介绍Sn基体积效应改进。

锡氧化物

SnO2因具有较高的理论比容量(781mAh/g)而备受关注,然而,其在应用过程中也存在一些问题:首次不可逆容量大、嵌锂时会存在较大的体积效应(体积膨胀250%~300%)、循环过程中容易团聚等。研究表明,通过制备复合材料,可以有效抑制SnO2颗粒的团聚,同时还能缓解嵌锂时的体积效应,提高SnO2的电化学稳定性。

锂电池图片

其中研究人员可以采用化学沉积和高温烧结法制备SnO2/石墨复合材料,其在100mA/g的电流密度下,比容量可达450mAh/g以上,在2400mA/g电流密度下,可逆比容量超过230mAh/g。实验表明,石墨作为载体,不仅能将SnO2颗粒分散得更均匀,而且能有效抑制颗粒团聚,提高材料的循环稳定性。

锡合金

SnCoC是Sn合金负极材料中商业化较成功的一类材料,其将Sn、Co、C(锡、钴、碳)三种元素在原子水平上均匀混合,并非晶化处理而得,该材料能有效抑制充放电过程中电极材料的体积变化,提高循环寿命。

如2011年,日本SONY公司宣布采用Sn系非晶化材料作容量为3.5AH的18650圆柱电池的负极。单质锡的理论比容量为994mAh/g,能与其他金属Li、Si、Co等形成金属间化合物。还有相关公司先采用无电电镀法制备了三维多孔结构的Cu薄膜载体,然后通过表面电沉积在Cu薄膜载体表面负载Sn-Co合金,从而制备了三维多孔结构的Sn-Co合金。

该材料的首次放电比容量为636.3mAh/g,首次库伦效率达到83.1%,70次充放电循环后比容量仍可达到511.0mAh/g。Wang等以石墨为分散剂,SnO2/SiO2和金属锂的混合物为反应物,采用高能机械球磨法并经后期热处理,制备了石墨基质中均匀分散的Sn/Si合金,该材料在200次充放电循环后,其可逆容量仍可达574.1mAh/g,性能优于单独的SnO2或SiO2等负极材料。

显然,锡氧化物和锡合金材料在发挥高容量的同时伴随着体积变化,所以解决或改善体积变化效应将成为金属基材料研发的方向。

留下回复

联系地址:福建省厦门市软件园二期望海路25号之一3楼;邮编:361008 © 1997 - 2024 开云app体育下载 版权所有,未经允许禁止转载 闽ICP备05002525号-1

电话:0592-5129696,0592-5129595;电子邮件:sales@chinatungsten.com

旧版
Baidu
map